Casio fx-3900Pv
Datasheet legend
Ab/c:
Fractions calculation
AC: Alternating current BaseN: Number base calculations Card: Magnetic card storage Cmem: Continuous memory Cond: Conditional execution Const: Scientific constants Cplx: Complex number arithmetic DC: Direct current Eqlib: Equation library Exp: Exponential/log functions Fin: Financial functions Grph: Graphing capability Hyp: Hyperbolic functions Ind: Indirect addressing Intg: Numerical integration Jump: Unconditional jump (GOTO) Lbl: Program labels LCD: Liquid Crystal Display LED: Light-Emitting Diode Li-ion: Li-ion rechargeable battery Lreg: Linear regression (2-var. stats) mA: Milliamperes of current Mtrx: Matrix support NiCd: Nickel-Cadmium recharg. batt. NiMH: Nickel-metal-hydrite rech. batt. Prnt: Printer RTC: Real-time clock Sdev: Standard deviation (1-var. stats) Solv: Equation solver Subr: Subroutine call capability Symb: Symbolic computing Tape: Magnetic tape storage Trig: Trigonometric functions Units: Unit conversions VAC: Volts AC VDC: Volts DC |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Casio fx-3900Pv
To my no small pleasure, lately I began receiving Casio programmable calculators that significantly improve upon the programmability of their predecessors. Although the programming model is still unduly simplistic (the only kind of branching possible is a conditional jump back to the beginning of program space), these calculators offer more program memory and, most significantly, the ability to review and edit programs.
With 300 bytes to play with, I was able to write several implementations of my favorite programming example, the Gamma function for this machine. The example reproduced below uses Stirling's formula and a simple iteration to produce an accurate result even for small or negative arguments:
001 Kin 1 002 × 003 ( 004 Kout 2 005 - 006 Kout 3 007 + 008 1 009 Kin 3 010 ) 011 = 012 Kin 2 013 5 014 Min 015 Kout 1 016 + 017 1 018 = 019 x<=M 020 Kin 1 021 × 022 LN 023 - 024 Kout 1 025 + 026 ( 027 2 028 × 029 π 030 ÷ 031 Kout 1 032 ) 033 LN 034 ÷ 035 2 036 + 037 ( 038 ( 039 ( 040 ( 041 1 042 1 043 8 044 8 045 1/x 046 ÷ 047 Kout 1 048 x² 049 - 050 1 051 6 052 8 053 0 054 1/x 055 ) 056 ÷ 057 Kout 1 058 x² 059 + 060 1 061 2 062 6 063 0 064 1/x 065 ) 066 ÷ 067 Kout 1 068 x² 069 - 070 3 071 6 072 0 073 1/x 074 ) 075 ÷ 076 Kout 1 077 x² 078 + 079 1 080 2 081 1/x 082 ) 083 ÷ 084 Kout 1 085 - 086 0 087 Kin 3 088 X-K2 089 LN 090 =